Abstract

AbstractInkjet printing has emerged as a promising low‐cost and high‐performance method for manufacturing printing‐based devices. However, the development of optimized substrates for inkjet printing using novel materials is limited. In this study, a novel polymeric substrate optimized for flexible electronic devices is fabricated using thin‐film processing and phase inversion of polyethersulfone (PES). The PES film consists of two layers of pores; the upper layer has nano‐sized pores that filter the nanoparticles in the conductive ink and allow for high‐density aggregation on the substrate, while the lower layer contains micro‐scale pores that quickly absorb and drain the ink solvent. The two porous structures lead to higher conductivity and high‐resolution printed patterns by minimizing solvent lateral diffusion. Additionally, the PES printing substrate can undergo high‐temperature curing of metal nanoparticles, enabling high‐resolution pattern printing with low resistance. The PES substrate is highly transparent and flexible, allowing for the fabrication of various printed electronic patterns and the production of high‐performance flexible electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.