Abstract

A novel amphiphilic polymer–paclitaxel conjugate P(LGG-paclitaxel)-PEG-P(LGG-paclitaxel) has been prepared. It was derived from its parent polymer P(LGG)-PEG-P(LGG), poly{(lactic acid)- co-[(glycolic acid)- alt-( l-glutamic acid)]}- block-poly(ethylene glycol)- block-poly{(lactic acid)- co-[(glycolic acid)- alt-( l-glutamic acid)]}, which was prepared by ring-opening copolymerization of l-lactide (LLA) with (3s)-benzoxylcarbonylethyl-morpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 4600 as a macroinitiator using stannous octoate (Sn(Oct) 2) as catalyst, and by subsequent catalytic hydrogenation. It could self-assemble into micelles in an aqueous system with P(LGG-paclitaxel) block in the core and PEG in the shell. ESEM and DLS analysis of the micelles revealed a homogeneous spherical morphology and a unimodal size distribution. In vitro release of paclitaxel from the conjugate micelles showed that its release rate depended on pH value and was higher at lower pH than in neutral condition. In vitro antitumor activity of the paclitaxel conjugate against rat brain glioma C6 cells was evaluated by MTT method. The results showed that the paclitaxel can be released from the conjugate without losing cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.