Abstract

Corrosion prevention and heat conduction are the key issues of numerous industrial equipment. Unfortunately, they are generally mutually exclusive properties for various heat exchangers-improving one capability usually causes decreased capability in another. Herein, a novel highly thermally conductive and anticorrosive coating for heat exchanger protection is reported, in which L-phenylalanine (Phe) modified boron nitride (BN) and graphene (G) sheets not only form heat conduction pathways, but also have unique multiple barrier effects. And the modified fillers exhibit improved interfacial compatibility with epoxy (EP). These factors confer the BN/G/Phe/zinc phosphate (ZP)/EP coating with a high thermal conductivity of 1.63 W/(m·K), which enhances 641% than that of EP coating (0.22 W/(m·K)), and could significantly reduce the heat transfer coefficient loss of the coated heat exchanger from 9.47% (when EP coating is coated) to 1.39% according to the theoretical calculations. Moreover, further combined with the corrosion-inhibiting film formed by ZP, the impedance modulus at 0.01 Hz of the BN/G/Phe/ZP/EP coating always maintains above 1011ohm·cm2 during 150 days of immersion in 3.5 wt% NaCl solution. The mechanism of the enhanced heat conduction and anti-corrosion performance of the coating are vividly discussed in detail. This work is of great significance to the development of new functional coatings with both high heat conduction and unique corrosion prevention capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.