Abstract

In order to integrate the advantages of polyamide thin film composite (TFC) nanofiltration (NF) membranes and that of polyester TFC NF membranes, a novel polyesteramide (PEA) TFC NF membrane was prepared by interfacial polymerization between serinol and trimesoyl chloride (TMC) and catalyzed by 4-dimethylaminopyridine (DMAP) on a flat-sheet polyethersulfone (PES) substrate membrane. The membrane performance was maximized by optimizing different preparation parameters. The reaction process was divided into four basic patterns. X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy confirmed the membrane had a partially cross-linked active layer that contained ester bonds, amide bonds and residual hydroxyl groups. Morphology analysis showed the surface of the PEA-TFC-NF membrane was grainy, which was different from the typical polyamide membranes. The contact angle and zeta potential measurements confirmed the PEA-TFC-NF membrane was highly hydrophilic and negatively charged across the entire pH range tested. The optimized PEA-TFC-NF membrane had a MWCO of 474Da and water permeability of 6.0Lm−2h−1bar−1 at 0.5MPa and 25°C. The membrane salt rejections followed the order of Na2SO4 > MgSO4 > NaCl > MgCl2, which were 96.27%, 83.92%, 58.68% and 28.76%, respectively. Moreover, the PEA-TFC-NF membrane displayed good antifouling ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.