Abstract
A novel polyhedral oligomeric silsesquioxane (POSS) composite polyacrylonitrile (PAN)-based porous structure gel polymer electrolyte (GPE) is prepared by phase inversion method. The POSS additive filler is firstly obtained in the dehydration condensation reaction of vinyltrimethoxysilane (VTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS). The composition and structure of synthetic POSS and the prepared POSS composite PAN-based GPEs are investigated. It is found that compared with pure PAN-based GPE, the POSS composite PAN-based GPE with 8 wt.% POSS presents the homogeneous pore distribution and abundant electrolyte uptake (540.4 wt.%), which endows GPE-8% with the excellent comprehensive performances: the highest ionic conductivity of 2.62 × 10−3 S cm−1 at room temperature, the higher lithium ion transference number of 0.38, the good compatibility with lithium anode, and the higher electrochemical stability window of 5.7 V (vs. Li/Li+). At 0.2 C, the GPE-8%-based lithium ion battery produces a satisfactory discharge capacity of 140 mAh g−1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.