Abstract

This paper presents a novel pneumatic generator based on the catalytic decomposition of hydrogen peroxide for producing the pressurized gas for mobile robotic systems driven by pneumatic actuators, thus replacing portable air compressors driven by electric motors. By adopting a pressure-feedback mechanism, hydrogen peroxide is autonomously self-injected into the catalytic reactor without the use of additional injection mechanisms such as electric micropumps. Additionally, the dynamic behavior of pressure generation is illustrated by both an analytic model and experiments. It is experimentally demonstrated that the proposed system has a considerably higher power density than a battery and electrical motor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.