Abstract

Quantitatively analyzing the impact of thruster plume’s infrared radiation on Infrared Earth Sensor (IRES) is still an open problem. This article analyzes the temperature and the density distribution characteristics of thruster plume by applying the point source model to quantitatively analyze the impact of thruster plume on IRES. Moreover, the infrared radiation characteristics of non-uniform gas were modeled based on the assumption of Equivalent Molecular Blackbody (EMB), Probability Theory and Planck’s Radiation Law. Furthermore, this paper proposes an algorithm to evaluate the effect of thruster plume on IRES. In addition, simulations on specific application scenarios by combining the infrared radiation model of Earth, the characteristics of the IRES and the spatial position relationship between the IRES and the thruster are conducted in this paper. The simulation results are verified that by employing a relatively simple model with a small amount of calculations, the impact of thruster plume on IRES can be quantitatively analyzed without utilizing professional tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.