Abstract

IntroductionThe polyaxial head pedicle screw-rod system is a commonly used spinal instrumentation technique to achieve stabilization, deformity correction, and bony fusion. We present a novel plate-based pedicle screw system (UNIMAXTM) that can be used for multi-level instrumentation with potential advantages for selected applications.MethodsBilateral titanium monoaxial pedicle screws are linked at each level by robust transversely oriented cross plates forming ring constructs capable of rigid triangulation at each level. The cross plates are then interconnected by sagittally oriented rigid plates situated medial to the screw heads. Biomechanically, the construct was tested for quasi-static torsion and fatigue in axial compression. The system is approved by the Food and Drug Administration (FDA). The system and case examples are presented showing its potential advantages.ResultsThe quasi-static torsion, the mean for the angular displacement, torsional stiffness, and torsional ultimate strength was 2.5 degrees (SD ± 0.8), 5.3 N-m/mm (SD ± 0.7), and 21.6 N-m (SD ± 4.4). For the fatigue in axial compression, the closed ring construct failed when the applied load and bending moment were ≥ 1500 N and ≥ 60 N.m. This system maximizes the construct rigidity, allows easy extension to adjacent levels, and can be incorporated intuitively into practice. The ring construct with triangulation at each level, together with its biomechanical robustness, predicts a high pullout resistance. It requires an open posterior approach incompatible with minimally invasive techniques.ConclusionThis system may have advantages over the screw-rod systems in carefully selected situations requiring extra rigidity and high pull-out strength for complex reconstructions, sagittal and/or coronal correction, patients with poor bone quality, revisions, and/or extension to adjacent levels.

Highlights

  • MethodsBilateral titanium monoaxial pedicle screws are linked at each level by robust transversely oriented cross plates forming ring constructs capable of rigid triangulation at each level

  • The polyaxial head pedicle screw-rod system is a commonly used spinal instrumentation technique to achieve stabilization, deformity correction, and bony fusion

  • We present a novel plate-based pedicle screw system (UNIMAXTM) that can be used for multi-level instrumentation with potential advantages for selected applications

Read more

Summary

Methods

Bilateral titanium monoaxial pedicle screws are linked at each level by robust transversely oriented cross plates forming ring constructs capable of rigid triangulation at each level. The system is titanium-based and was cleared by the Food and Drug Administration (FDA) 510(k) (No K024313). It includes monoaxial pedicle screws, horizontal and vertical plates, and a multitude of washers, nuts, and bolts to connect these components (Figure 1). The concept behind the design is to create a ring construct forming rigid triangulation at each spinal level This is done by interconnecting the screw heads at each level with a robust transversely oriented cross plate. The cross plates are interconnected by sagittally oriented rigid plates situated medial to the screw heads (Figure 2). A detailed technical description - the UNIMAX product catalog - can be found here (https://www.paramountsurgicals.com/pdf/paramountsurgicals_catalog.pdf)

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.