Abstract
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.