Abstract
In this paper, the development and characterization of a novel test rig for auto-ignition (AI) studies of a fuel jet propagating into a hot turbulent co-flow is reported. The test rig, based on microwave plasma heating, is capable of achieving co-flow temperatures up to 1300 K and velocities up to 40 $$\hbox {ms}^{-1}$$ . Important boundary conditions at nozzle exit such as temperature, species, and velocity field were determined to prove the capabilities and limitations of the test rig. Liftoff height (LOH) measurements of $$\hbox {CH}_4$$ , $$\hbox {C}_2\hbox {H}_4$$ , and $$\hbox {CH}_{4}/\hbox {H}_{2}$$ jets, propagating into a turbulent heated air co-flow, were taken using chemiluminescence imaging. Effects of the temperature and Reynolds number (Re) of co-flow and jet were also studied. Results showed that the flame stabilization mechanism is supported substantially by AI rather than pure flame propagation. While the co-flow temperature dominates the AI process, the Re and temperature of the jet just have a small impact on the LOH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.