Abstract

Compliant mechanisms with flexure hinges are well-suited for high-precision applications due to their smooth and repeatable motion. However, the synthesis of planar compliant mechanisms based on notch flexure hinges is mostly limited to the use of single-axis hinges due to the lack of certain multiple-axis flexure hinges. This contribution introduces a novel planar leaf-type notch flexure hinge with two coincident rotation axes based on circular pre-curved leaf springs. A generally suitable hinge geometry is determined through a parametric study using the finite element method (FEM). Finally, the two-axis flexure hinge is applied and investigated for the use in two planar micropositioning stages for the rectilinear guidance of an output link with a large centimeter stroke. The presented two-axis flexure hinge turns out to be a suitable approach to monolithically connect three links of a compliant mechanism in a planar and precise way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call