Abstract

Planar cell polarity (PCP) originally referred to the coordination of global organ axes and individual cell polarity within the plane of the epithelium. More recently, it has been accepted that pertinent PCP regulators play essential roles not only in epithelial sheets, but also in various rearranging cells. We identified pepsinogen-like (pcl) as a new planar polarity gene, using Drosophila wing epidermis as a model. Pcl protein is predicted to belong to a family of aspartic proteases. When pcl mutant clones were observed in pupal wings, PCP was disturbed in both mutant and wild-type cells that were juxtaposed to the clone border. We examined levels of known PCP proteins in wing imaginal discs. The amount of the seven-pass transmembrane cadherin Flamingo (Fmi), one of the PCP "core group" members, was significantly decreased in mutant clones, whereas neither the amount of nor the polarized localization of Dachsous (Ds) at cell boundaries was affected. In addition to the PCP phenotype, the pcl mutation caused loss of wing margins. Intriguingly, this was most likely due to a dramatic decrease in the level of Wingless (Wg) protein, but not due to a decrease in the level of wg transcripts. Our results raise the possibility that Pcl regulates Wg expression post-transcriptionally, and PCP, by proteolytic cleavages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.