Abstract

Abstract Three-dimensional body scanning systems are increasingly used in sensitive public areas such as airports. By providing a high resolution image of a person from all sides, it is possible to detect potential metallic, ceramic and explosive threats. For these systems, it is essential to design broadband antennas with a fan beam, highly directional radiation in one plane and wide in the other plane, and characterized by phase center stability as a function of frequency. In this paper, the planar lateral wave antenna (LWA) array is proposed to achieve these radiation requirements. The LWA has two critical shortcomings: the flaring part and the dielectric matching layers (MLs), to operate over very broad frequency bands. In this work, these shortcomings are overcomed by forming a connected array of planar LWAs to improve broadband performance and by applying necessary perforations on the dense dielectric lens antenna to create different effective relative permittivity regions. An eight element connected and perforated LWA array is designed to operate in the 8–24 GHz frequency band. The drilled holes are proved to play a similar critical role of MLs in internal reflection suppression. The results emphasize all crucial demands for body scanning systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.