Abstract
The paper aims to develop a novel pitch control system for a large wind turbine driven by a variable-speed pump-controlled hydraulic servo system. To perform practical pitch control experiments, a full-scale test rig of the hydraulic pitch control system for a 2 MW wind turbine’s blade, including a novel pitch control mechanism, a variable-speed pump-controlled hydraulic servo system, a disturbance system and a PC-based control system, is designed and set up. The variable-speed pump-controlled hydraulic servo system, containing an AC servo motor, a constant displacement hydraulic piston pump two differential hydraulic cylinders and hydraulic circuits, achieved high response and high energy efficiency, so it is suitable for wind turbine applications. Besides, to implement the pitch control in the proposed novel pitch control system, an adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation (AFC-STFSMC) is developed to design the pitch controller. Finally, the developed variable-speed pump-controlled hydraulic servo system was built and verified for the path tracking control and path-positioning control of the pitch control of the wind turbines by practical experiments in a full-scale test rig under different path profiles, load torques, and random wind speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.