Abstract

In this study, a piezoelectric active sensing-based time reversal method was investigated for monitoring pipeline internal corrosion. An effective method that combines wavelet packet energy with a Convolutional Neural Network (CNN) was proposed to identify the internal corrosion status of pipelines. Two lead zirconate titanate (PZT) patches were pasted on the outer surface of the pipeline as actuators and sensors to generate and receive ultrasonic signals propagating through the inner wall of the pipeline. Then, the time reversal technique was employed to reverse the received response signal in the time domain, and then to retransmit it as an excitation signal to obtain the focused signal. Afterward, the wavelet packet transform was used to decompose the focused signal, and the wavelet packet energy (WPE) with large components was extracted as the input of the CNN model to rapidly identify the corrosion degree inside the pipeline. The corrosion experiments were conducted to verify the correctness of the proposed method. The occurrence and development of corrosion in pipelines were generated by electrochemical corrosion, and nine different depths of corrosion were imposed on the sample pipeline. The experimental results indicated that the classification accuracy exceeded 99.01%. Therefore, this method can quantitatively monitor the corrosion status of pipelines and can pinpoint the internal corrosion degree of pipelines promptly and accurately. The WPE-CNN model in combination with the proposed time reversal method has high application potential for monitoring pipeline internal corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.