Abstract

A chiral pillar[3]trianglimine (C60 H72 N6 O6 ) with a deep cavity has been developed as a chiral selector and bonded to thiolated silica by thiol-ene click reaction to fabricate a novel chiral stationary phase for enantioseparation in high-performance liquid chromatography. The enantioseparation performance of the fabricated chiral stationary phase has been evaluated by separating various racemic compounds, including alcohols, esters, amines, ketones, amino acids, and epoxides, in both normal-phase and reversed-phase elution modes. In total, 14 and 17 racemates have been effectively separated in these two separation modes, respectively. In comparison with two widely used chiral columns (Chiralcel OD-H and Chiralpak AD-H), our novel chiral stationary phase offered good chiral separation complementarity, separating some of the tested racemates that could not be separated or were only partially separated on these two commercial columns. The influences of analyte mass, mobile phase composition, and column temperature on chiral separation have been investigated. Good repeatability, stability, and column-to-column reproducibility of the chiral stationary phase for enantioseparation have been observed. After the fabricated column had been eluted up to 400 times, the relative standard deviations (n=5) of resolution (Rs) and retention time of the separated analytes were<0.39% and<0.20%, respectively. The relative standard deviations (n=3) of Rs and retention time for column-to-column reproducibility were<4.6% and<5.2%, respectively. This study demonstrated that the new chiral stationary phase has great prospects for chiral separation in high-performance liquid chromatography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.