Abstract

Pickering emulsion (PE) stabilized by bio-compatible polymer nanoparticles (NPs) was first developed for the encapsulation of lipophilic tocopheryl acetate (TA) for its application in cosmetics. The poly(lactide-co-glycolide) (PLGA)/poly(styrene-co-4-styrene-sulfonate) (PSS) NPs were prepared by solvent displacement, and then they were used as emulsifier particles to fabricate TA-encapsulated PE. It was found that the TA encapsulation efficiency was >98%. Scanning electron microscope analysis showed that the obtained PE exhibited 'shell' structure. The PE droplets had spherical shape with diameter around 2μm and good dispersibility as evidenced by laser scanning confocal microscope. In addition, the PE was stable at the pH range of 4.29-7.07 which was compatible to skin pH. Meanwhile, the PE also showed good storage stability since there was no obvious change in its diameter, PDI and TA retention after storage at 4°C for 30days. The DPPH method confirmed that TA retained its antioxidation in the PE preparation process. Moreover, an improved UV irradiation stability was observed for the TA after being encapsulated in the PE. The results of cytotoxicity test suggested that the PE was compatible to the Hacat cell line (human immortalized keratinocytes). And there is negligible influence in the cellular uptake of TA after its encapsulation in the PE. However, the cellular antioxidant activity (CAA) of encapsulated TA presented a significant increase from 1.32 to 1.56μMquercetinequivalent/mg·mL-1. Hence, the prepared PE was promising as the carrier of TA for its cosmetic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.