Abstract
The well-known standard photo-thermo-refractive (PTR) glass has some limitations in holographic applications in the visible region due to light scattering on the large NaF nanocrystals formed during the photo-thermo-induced (PTI) crystallization process. The large size of the NaF nanocrystals can be reduced by forming more nucleation centers (silver nanoparticles). We suppose this can be achieved by introducing more silver into the batch composition of the glass. However, bromine does not permit high silver concentrations due to the spontaneous crystallization and high Mie-scattering. Therefore, we introduce a novel PTR glass by replacing bromine with chlorine. The novel glass enables us to increase the silver concentration and consequently increase the concentration of the formed nanoparticles. The optical properties, differential scanning calorimetry, and X-ray diffraction analyses were performed on the novel glasses. An experimental and theoretical investigation of the PTI crystallization process was carried out by monitoring the evolution of the surface plasmon resonance (SPR) absorption band. It was found that the UV exposure and heat treatment lead to precipitation of the NaF crystalline phase on a chlorine-containing dielectric shell that surrounds the silver nanoparticle. It was also found that using chlorine instead of bromine leads to a blue shift in the SPR absorption peak location.Volume Bragg gratings were successfully recorded in the novel PTR glasses. The maximum value of the refractive index modulation amplitude obtained for the novel glass is comparable with that for the standard PTR glass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.