Abstract
AbstractA novel photo‐induced electrochemical biosensing method has been developed based on fluorescence quenching effect and electrochemical method. In this sensing strategy, the molecular beacon probes labeled with methylene blue were immobilized on the gold nanoparticles modified gold electrode surface firstly; then dopamine was assembled on the electrode surface through electrostatic interaction with gold nanoparticles. Under the continuous illumination, the fluorescence of the methylene blue was quenched by the gold nanoparticles before hybridization; after hybridization with the complementary DNA, methylene blue was far away from the gold nanoparticles and the fluorescence recovered, and then singlet oxygen was generated in the photosensitive reaction of methylene blue in the presence of dissolved oxygen. Singlet oxygen reacted with dopamine, which resulted in the reduction of concentration of the dopamine on the electrode surface. The current of the dopamine on the electrode was used for the sensing of the conformational change of molecular beacon and hence for the detection of target DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.