Abstract

Development of substituted 1,8-naphthalimides for photochemical cross-linking of biomolecules is the focus of this research. This study describes limited cross-linking of collagen in the artery wall to control recoil and buckling in arteries following balloon angioplasty. Isolated porcine arteries were overstretched (25%) with balloon angioplasty (BA) +/- light-activated naphthalimide treatment (NVS). Lumen size and recoil were measured as retention of stretch after angioplasty. Cross-sectional compliance and distensibility coefficients were measured as slope of cross-sectional area versus increasing hydrostatic pressure. Buckling was measured, with 30% axial pre-stretch and 200 mmHg, as deviation from the center line. Electron microscopy evaluation of collagen fibers was conducted. Uninjured arteries have low compliance and low levels of buckling, whereas the BA-injured arteries demonstrated much greater compliance and buckling behavior. Treatment of the injured artery with NVS reduced buckling and demonstrated compliance midway between the two groups while retaining the increased luminal diameter imparted by angioplasty compared to untreated vessels. In summary, limited collagen cross-linking with NVS treatment resulted in lumen retention, as well as improved compliance without the accompanying rigidity and stiffness of conventional stent therapy or current cross-linking materials. This treatment shows great promise for dilation, repair and strengthening of arteries damaged by injury or vascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.