Abstract

An inherently flame-retardant poly(lactic acid) (PLA) was synthesized via the chain-extending reactions of dihydroxyl terminated pre-poly(lactic acid) (pre-PLA), which was synthesized by direct polycondensation of l-lactic acid using 1,4-butanediol as initiator and stannous chloride (SnCl2) as catalyst, using ethyl phosphorodichloridate as chain extender. The resulting phosphorus-containing poly(lactic acid) (PPLA) was characterized by gel permeation chromatography (GPC), 1H and 31P nuclear magnetic resonance (1H, 31P NMR) and homonuclear correlation spectroscopy (COSY) and inductively coupled plasma-mass (ICP). A comprehensive flame retardant property of PPLA was evaluated by microscale combustion calorimetry (MCC), limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test (CCT). PPLA has excellent flame retardancy and also can be used as a flame retardant for commercial PLA. Only 5 wt.% of PPLA added into PLA can obtain good flame retardant properties. As the content of PPLA is further increased to 10 wt.%, PLA can have much better flame retardancy (LOI = 35 and UL-94 V-0 rating), lower peak heat release rate (pHRR) and longer ignition time (TTI) than neat PLA. All those results mean that this novel approach to impart flame retardancy to PLA is very effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call