Abstract

Low-grade glioma (LGG), a common primary tumor, mainly originates from astrocytes and oligodendrocytes. Increasing evidence has shown that peroxisomes function in the regulation of tumorigenesis and development of cancer. However, the prognostic value of peroxisome-related genes (PRGs) in LGG has not been reported. Therefore, it is necessary to construct a prognostic risk model for LGG patients based on the expression profiles of peroxisome-related genes. Our study mainly concentrated on developing a peroxisome-related gene signature for overall survival (OS) prediction in LGG patients. First, according to these peroxisome-related genes, all LGG patients from The Cancer Genome Atlas (TCGA) database could be divided into two subtypes. Univariate Cox regression analysis was used to find prognostic peroxisome-related genes in TCGA_LGG dataset, and least absolute shrinkage and selection operator Cox regression analysis was employed to establish a 14-gene signature. The risk score based on the signature was positively associated with unfavorable prognosis. Then, multivariate Cox regression incorporating additional clinical characteristics showed that the 14-gene signature was an independent predictor of LGG. Time-dependent ROC curves revealed good performance of this prognostic signature in LGG patients. The performance about predicting OS of LGG was validated using the GSE107850 dataset derived from the Gene Expression Omnibus (GEO) database. Furethermore, we constructed a nomogram model based on the gene signature and age, which showed a better prognostic power. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that neuroactive ligand-receptor interaction and phagosome were enriched and that the immune status was decreased in the high-risk group. Finally, cell counting kit-8 (CCK8) were used to detect cell proliferation of U251 and A172 cells. Inhibition of ATAD1 (ATPase family AAA domain-containing 1) and ACBD5 (Acyl-CoA binding-domain-containing-5) expression led to significant inhibition of U251 and A172 cell proliferation. Flow cytometry detection showed that ATAD1 and ACBD5 could induce apoptosis of U251 and A172 cells. Therefore, through bioinformatics methods and cell experiments, our study developed a new peroxisome-related gene signature that migh t help improve personalized OS prediction in LGG patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.