Abstract

TAK-559, a newly developed non-thiazolidinedione, activates both peroxisome proliferator–activated receptors α and γ. We investigated the effects of TAK-559 on dyslipidemia and insulin resistance in nonhuman primates. Five adult male obese prediabetic rhesus monkeys were studied on vehicle and after TAK-559 treatment (0.3, 1.0, 3.0 mg/kg per day) for a total of 12 weeks. No significant changes were observed in body weight and fasting plasma glucose, total plasma cholesterol, very low-density lipoprotein–triglyceride, and low-density lipoprotein cholesterol levels. TAK-559 treatment resulted in significant elevation of circulating high-density lipoprotein (HDL) cholesterol levels, consisting of an increase in large HDL particles and a decrease in small dense HDL particles. Nuclear magnetic resonance data exhibited a less atherogenic lipoprotein profile with treatment. Plasma triglyceride and apolipoprotein B-100 levels decreased, whereas apolipoprotein A-I increased during TAK-559 treatment. Hyperinsulinemia and insulin resistance (quantitative insulin sensitivity check index and homeostasis model assessment) were significantly corrected with the highest dose of 3.0 mg/kg per day in these prediabetic monkeys. In addition, no adverse effects on representative liver function parameters were observed during the study period. These results suggest that TAK-559 had beneficial effects on lipoprotein profiles and insulin sensitivity, without any side effect on body weight, which suggests that TAK-559 may provide a potentially safe approach for delaying the onset of type 2 diabetes mellitus and may reduce the risk of cardiovascular disease. The positive effects of TAK-559 in nonhuman primates have led to further clinical trials of TAK-559 in Europe and the United States.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.