Abstract

AbstractWind power is a major contributor in the renewable energy sector but it faces some issues regarding modern grid-code compliance. Popular wind power systems based on Doubly-Fed Induction Generators (DFIG) need additional protection under grid voltage disturbances. They also need to support the grid voltage under such transient occurrences. This paper presents a novel performance enhancement scheme for DFIGs subjected to symmetrical and asymmetrical voltage sags and swells at the Point of Common Coupling (PCC). The scheme comprises a protection system and a reactive power management system working simultaneously under the command of a supervisory control system. The protection system protects the DFIG converter by limiting the overcurrent in the Rotor Side Converter (RSC) of the DFIG and keeping the dc-link capacitor voltage within an acceptable range; whereas, the reactive power management supports the grid voltage by either injecting or absorbing reactive power to reduce the magnitude of voltage sags and swells. It is found that the performance of the DFIG wind generation system improves significantly under the proposed scheme. A grid-connected 9-MW DFIG wind farm is used for simulation in MATLAB/Simscape Power Systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call