Abstract
Improving carbon efficiency is an effective way to save energy and reduce harmful emission for a sintering process. Optimizing carbon efficiency is an effective way to achieve that goal, and its precondition is to assess the performance of the carbon efficiency. However, there is seldom research about how to assess the carbon efficiency whether it needs to be optimized. To address this, this paper introduces a performance assessment method for evaluating the performance of the carbon efficiency. First, the sintering process and the key characteristics are analyzed, and the carbon efficiency indexes are defined. Second, the structure of the assessment method is presented. The method consists of a prediction model based on three NNs, and an assessment method based on the fuzzy synthetic evaluation method. Two-level combination strategy is proposed to improve prediction performance and assessment accuracy, with the using of bootstrap aggregating, linear combination, and majority voting. Finally, verification based on process data shows that the proposed method can assess the performance of the carbon efficiency with high accuracy. More specially, the prediction errors of the combination model for the CCR are basically in the range of [-2.738 kg/t, 3.442 kg/t], and for the CO/CO2 they are basically in the range of [-8.16 × 10−3, 4.828 × 10−3]. The combination models have better prediction performance than single NNs. Moreover, the assessment accuracy of the proposed method is 87%, which has higher accuracy than other models. This model lays the groundwork of improving the carbon efficiency for sintering process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.