Abstract

In conventional Minimally Invasive Surgery, the surgeon conducts the operation while a human or robot holds the laparoscope. Laparoscope control is returned to the surgeon in teleoperated camera holding robots, but simultaneously controlling the laparoscope and surgical tools might be cognitively demanding. On the other hand, fully automated camera holders are still limited in their performance. To help the surgeon to better focus on the main operation while maintaining their control authority, we propose an automatic laparoscope zoom factor control framework for Robot-Assisted Minimally Invasive Surgery. In this paper, we present the perception section of the framework. It extracts and uses the surgical tool's geometric characteristics to adjust the laparoscope's zoom factor, without any artificial markers. The acceptable range and tooltip's position frequency during operations are analysed based on the gallbladder removal surgery dataset (Cholec80). The common range and tooltip's heatmap are identified and presented quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.