Abstract

BackgroundPreeclampsia (PE) is a complex pregnancy-related disease that endangers the safety of maternal and fetal. The purpose of this study is to reveal the pathogenesis of preeclampsia and discover new predictors from the perspective of peptidomics. The umbilical cord blood of PE and control group was analyzed by peptidomics. A peptide named Regulation of Proliferation Process in Preeclampsia (ROPPIP) was screened out to explore its role in the proliferation, migration and apoptosis of trophoblast cells in preeclampsia.MethodsWe compared and analyzed the umbilical cord blood of patients with PE and normal pregnant women using liquid chromatography-tandem mass spectrometry (LC-MS). hTR-8/Svneo cells cultured in vitro were divided into ROPPIP group and a disordered peptide group as control. Cell Counting Kit-8 (CCK-8) assay, flow cytometry, Transwell chamber assays and western blot analysis were performed to detect cell proliferation, invasion, migration and apoptosis, in addition to the expression of Matrix metalloproteinase-2 (MMP2), nuclear associated antigen Ki67, B-cell lymphoma-2 (Bcl2), Caspase 3, and β-actin protein.ResultsWe identified 133 differential peptides. Of these, 51 were up-regulated while 82 were down-regulated. the polypeptide SFGVRMATASPTDGNV with low differential expression in the serum of PE patients was selected for the study, we named the polypeptide as Regulation of Proliferation Process in PE (ROPPIP). The experiment shows that ROPPIP can up-regulate the expression levels of MMP2, Ki67, and Bcl2 in HTR-8/Svneo cells, down-regulate the expression of caspase-3, promote the proliferation and migration of HTR-8/Svneo cells and inhibit the apoptosis induced by cisplatin, the activation of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway may be associated with the function of ROPPIP.ConclusionsROPPIP promotes HTR-8/Svneo cells migration and proliferation, and inhibits apoptosis, by regulating the activation of the PI3K/AKT/mTOR signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.