Abstract

In order to improve the gas-sensing performance of ZnO, a novel peony shaped ZnO stacked with nanosheets were prepared using hydrothermal method, and the obtained ZnO was characterized and tested for gas sensitivity. The results showed that the particle distribution of the peony shaped ZnO was uniform, with a particle size of about 0.8 μm. The gas-sensing response test results show that the peony shaped ZnO has excellent selectivity to ethanol gas. When the concentration of ethanol gas is 100 ppm, the gas-sensing response of the peony shaped ZnO to ethanol gas reaches 17.4, and the response time and recovery time are 8 s and 12 s, respectively. Even at an ethanol gas concentration of 2 ppm, the gas-sensing response of the peony shaped ZnO to ethanol gas can reach 2.1. Compared to existing literature reports, the peony shaped ZnO prepared in this paper has better gas-sensing performance. This study will provide data support and theoretical reference for the development of high-performance gas sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.