Abstract
In the field of precision measurement, subdividing displacement within the grating period to achieve high precision and high resolution remains a significant challenge. For subdivision, traditional optical linear encoders need complex coding and complicated optical systems, which struggle to meet the demands of nanometer measurement. In this paper, based on the fundamental principles of grating displacement measurement, a high-precision peak positioning method from grating images is proposed for linear displacement measurements with nanometer resolution and submicron accuracy. By utilizing a local gradient interpolation algorithm to optimize curves, it could further improve the accuracy of displacement measurement. Experiments demonstrate that this method achieves a resolution of 2 nm and an accuracy of ± 0.1 μm in a range of 50 mm using a grating with a 20 μm period. This sets the groundwork for subdividing optical linear encoders further, the resolution and accuracy could be further improved by optimizing the subdivision method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.