Abstract

A new stepwise approach to variable selection for spectroscopy that includes chemical information and attempts to test several spectral regions producing high ranking coefficients has been developed to improve on currently available methods. Existing selection techniques can, in general, be placed into two groups: the first, time-consuming optimization approaches that ignore available information about sample chemistry and require considerable expertise to arrive at appropriate solutions (e.g. genetic algorithms), and the second, stepwise procedures that tend to select many variables in the same area containing redundant information. The algorithm described here is a fast stepwise procedure that uses multiple ranking chains to identify several spectral regions correlated with known sample properties. The multiple-chain approach allows the generation of a final ranking vector that moves quickly away from the initial selection point, testing several areas exhibiting correlation between spectra and composition early in the stepping procedure. Quantitative evidence of the success of this approach as applied to Raman spectroscopy is given in terms of processing speed, number of selected variables, and prediction error in comparison with other selection methods. In this respect, the procedure described here may be considered as a significant evolutionary step in variable selection algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.