Abstract

In eukaryotes, hydrogen sulphide acts as a signalling molecule and cytoprotectant. Hydrogen sulphide is known to be produced from L-cysteine by cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase coupled with cysteine aminotransferase. Here we report an additional biosynthetic pathway for the production of hydrogen sulphide from D-cysteine involving 3-mercaptopyruvate sulfurtransferase and D-amino acid oxidase. Unlike the L-cysteine pathway, this D-cysteine-dependent pathway operates predominantly in the cerebellum and the kidney. Our study reveals that administration of D-cysteine protects primary cultures of cerebellar neurons from oxidative stress induced by hydrogen peroxide and attenuates ischaemia-reperfusion injury in the kidney more than L-cysteine. This study presents a novel pathway of hydrogen sulphide production and provides a new therapeutic approach to deliver hydrogen sulphide to specific tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call