Abstract

Onsite surface inspection with a touch probe or a laser scanner is a promising technique for efficiently evaluating surface profile error. The existing work of 5-axis inspection path generation bears a serious drawback, however, as there is a drastic orientation change of the inspection axis. Such a sudden change may exceed the stringent physical limit on the speed and acceleration of the rotary motions of the machine tool. In this paper, we propose a novel path generation method for onsite 5-axis surface inspection. The accessibility cones are defined and used to generate alternative interference-free inspection directions. Then, the control points are optimally calculated to obtain the dual-cubic non-Uniform rational B-splines (NURBS) curves, which respectively determine the path points and the axis vectors in an inspection path. The generated inspection path is smooth and non-interference, which deals with the ‘mutation and shake’ problems and guarantees a stable speed and acceleration of machine tool rotary motions. Its feasibility and validity is verified by the onsite inspection experiments of impeller blade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call