Abstract

This study describes the anti-cancer activity of P19, an analog of parthenin. P19 induced apoptosis in HL-60 cells and inhibited cell proliferation with 48 h IC50 of 3.5 μM. At 10 mg/kg dose, it doubled the median survival time of L1210 leukemic mice and at 25 mg/kg it inhibited Ehrlich ascites tumor growth by 60%. Investigation of the mechanism of P19 induced apoptosis in HL-60 cells revealed that N-acetyl- l-cysteine (NAC) and s-methylisothiourea (sMIT) could reverse several molecular events that lead to cell death by inhibiting nitric oxide (NO) formation. It selectively produced massive NO in cells while quenching the basal ROS levels with concurrent elevation of GSH. P19 disrupted mitochondrial integrity leading to cytochrome c release and caspase-9 activation. P19 also caused caspase-8 activation by selectively elevating the expression of DR4 and DR5. All these events lead to the activation of caspase-3 leading to PARP-1 cleavage and DNA fragmentation. However, knocking down of AIF by siRNA also suppressed the apoptosis substantially thus indicating caspase independent apoptosis, too. Further, contrary to enhanced iNOS expression, its transcription factor, NF-κB (p65) was cleaved with a simultaneous increase in cytosolic IκB-alpha. In addition, P19 potently inhibited pro-survival proteins pSTAT3 and survivin. The multi-modal pro-apoptotic activity of P19 raises its potential usefulness as a promising anti-cancer therapeutic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.