Abstract

Given the projected dramatic increase in the number of processors and resources in a system-on-a-chip, a quadratic increase in the likelihood of deadlock is predicted due to complex system behavior. To deal with this issue, we here present a novel parallel hardware-oriented deadlock detection algorithm with O(l) deadlock detection and 0(min(m,n)) preparation, where m and n are the numbers of processes and resources, respectively. Our contributions are (i) the first O(l) deadlock detection hardware implementation and (ii) a new algorithmic method of achieving 0(min(m,n)) overall run-time complexity. We implement our algorithm in Verilog HDL and demonstrate that deadlock detection always takes only two clock cycles regardless of the size of a system (i.e., m and n).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.