Abstract

We present a parallel adaptive Monte Carlo (MC) algorithm for the numerical solution of the nonlinear Poisson equation in semiconductor devices. Based on a fixed random walk MC method, 1-irregular unstructured mesh technique, monotone iterative method, a posterior error estimation method, and dynamic domain decomposition algorithm, this approach is developed and successfully implemented on a 16-processors (16-PCs) Linux-cluster with message-passing interface (MPI) library. To solve the nonlinear problem with MC method, monotone iterative method is applied in each adaptive loop to obtain the final convergent solution. This approach fully exploits the inherent parallelism of the monotone iterative as well as MC methods. Numerical results for p–n diode and MOSFET devices are demonstrated to show the robustness of the method. Furthermore, achieved parallel speedup and related parallel performances are also reported in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.