Abstract

Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call