Abstract
Soil tests for plant-available phosphorus (P) are suggested to provide offsite P analysis required to monitor P fertilizer application and reduce P losses to downstream water. However, procedural and cost limitations of current soil phosphate tests have restricted their widespread use and have made them accessible only in laboratories. This study proposes a novel paper-based reagentless electrochemical soil phosphate sensor to extract and detect soil phosphate using an inexpensive and simple approach. In this test, concentrated Mehlich-3 and molybdate ions were impregnated in filter paper, which served as the phosphate extraction and reaction zone, and was followed by electrochemical detection using cyclic voltammetry signals. Soil samples from 22 sampling sites were used to validate this method against inductively coupled plasma optical emission spectroscopy (ICP) soil phosphate tests. Regression and correlation analyses showed a significant relationship between phosphate determinations by ICP and the proposed method, delivering a correlation coefficient, r, of 0.98 and a correlation slope of 1.02. The proposed approach provided a fast, portable, low-cost, accessible, reliable, and single-step test to extract and detect phosphate simultaneously with minimum waste (0.5 mL per sample), which made phosphate characterization possible in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.