Abstract

In this study, a novel PAN/NaX/ZnO nanocomposite absorbent was introduced and its ability to remove of uranium anionic species, which are the most dominant species of uranium in water at natural pH, from contaminated waters was studied. In this regards, micro and nano sized NaX zeolite and PAN/NaX/ZnO nanocomposite were successfully synthesized and characterized using various methods, including X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FT-IR), atomic absorption spectroscopy (AAS), and Brunauer–Emmett–Teller (BET) specific surface area analysis. Batch technique was used to study the adsorption behavior of uranium ions from contaminated water as a function of solid–liquid ratio, initial uranium concentration, contact time, and temperature. Results showed that although NaX nanozeolite due to its negative framework charge, showed low sorption capacity for adsorption of uranium anionic species but the composite of it with ZnO nanoparticles and polyacrylonitrile (PAN) effectively improved its uranium adsorption capacity. The novel PAN/NaX/ZnO nanocomposite could selectively remove uranium ions from contaminated water with removal efficiency of more than 98.65 % in the presence of all anions and cations which are available in waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call