Abstract

Developing new technologies is a key to achieve renewable energy utilization. The near-field thermo-photovoltaics (NFTPV), an emerging power generation device, is investigated from the energy perspective in this paper. A novel oxy-enrich NFTPV system is proposed, and a thermo-physical model is established for sustainable fuel gas based on energy balance. The effects of parameters on system performance are numerically explored, including the furnace size, oxygen ratio, voltage and vacuum gap, etc. Moreover, special attention is paid to the effects of oxygen ratio on system performance under 2 atm of O2/N2 and O2/CO2. Besides, exergy analysis is conducted. The results show that it is more appropriate to control the power density of furnace at 50 kW/m2 in system design. The efficiency of NFTPV system is about twice greater than that of far-field TPV system. The power density of NFTPV system increases by more than 2.5 times when the oxygen ratio increases; the TPV volume can increase by 2–3 times and the efficiency is also improved. The results indicate that oxy-enrich combustion with higher oxygen ratio matches a larger NFTPV system, which reduces the manufacturing difficulty and is significant in engineering. This study provides new ideas and references for NFTPV practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.