Abstract

Monocarboxylate transporter 1 (MCT1) is responsible for oral absorption of short-chain monocarboxylic acids from small intestine, hence, it's likely to serve as an ideal design target for the development of oral prodrugs. However, potential application of MCT1 to facilitate the oral delivery is still unclear. Irregular oral absorption, poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil (5-FU). Herein, we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages. Interestingly, due to high MCT1 affinity and good gastrointestinal stability, 5-FU-octanedioic acid monoester prodrug exhibited significant improvement in membrane permeability (13.1-fold) and oral bioavailability (4.1-fold) compared to 5-FU. More surprisingly, stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells, which provides an ideal foundation for the improvement of oral bioavailability. In summary, good gastrointestinal stability, high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs, and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.