Abstract

A novel optimal preventive maintenance policy for a cold standby system consisting of two components and a repairman is described herein. The repairman is to be responsible for repairing either failed component and maintaining the working components under certain guidelines. To model the operational process of the system, some reasonable assumptions are made and all times involved in the assumptions are considered to be arbitrary and independent. Under these assumptions, all system states and transition probabilities between them are analyzed based on a semi-Markov theory and a regenerative point technique. Markov renewal equations are constructed with the convolution of the cumulative distribution function of system time in each state and corresponding transition probability. By using the Laplace transform to solve these equations, the mean time from the initial state to system failure is derived. The optimal preventive maintenance policy that will provide the optimal preventive maintenance cycle is identified by maximizing the mean time from the initial state to system failure, and is determined in the form of a theorem. Finally, a numerical example and simulation experiments are shown which validated the effectiveness of the policy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.