Abstract
Laser radar are ideally suitable for recognizing objects, detection, target tracking or obstacle avoidance, because of the high angular and range resolution. In recent years, scannerless ladar has developed rapidly. In contrast with traditional scanner ladar, scannerless ladar has distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. However, the scannerless ladar is still in the stage of laboratory and the performance cannot meet the demands of practical applications. Hence, traditional scanner laser radar is still mainly applied. In scanner ladar system, optical scanner is the key component which can deflect the direction of laser beam to the target. We investigated a novel scanner based on the characteristic of fiber’s light-conductive. The fiber bundles are arranged in a special structure which connected to a motor. When motor working properly, the laser passes through the fibers on incident plane and the location of laser spot on output plane will move along with a straight line in a constant speed. The direction of light will be deflected by taking advantage of transmitting optics, then the linear sweeping of the target can be achieved. A laser radar scheme with high speed and large field of view can be realized. Some researches on scanner are simply introduced on section1. The structure of the optical scanner will be described and the practical applications of the scanner in transmitting and receiving optical paths are discussed in section2. Some characteristic of scanner is calculated in section3. In section4, we report the simulation and experiment of our prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.