Abstract

Robust and effective optic disc detection is a necessary processing component in automatic retinal screening systems. In this paper, optic disc localization is achieved by a novel illumination correction operation, and contour segmentation is completed by a supervised gradient vector flow snake (SGVF snake) model. Conventional GVF snake is not sufficient to segment contour due to vessel occlusion and fuzzy disc boundaries. In view of this reason, the SGVF snake is extended in each time of deformation iteration, so that the contour points can be classified and updated according to their corresponding feature information. The classification relies on the feature vector extraction and the statistical information generated from training images. This approach is evaluated by means of two publicly available databases, Digital Retinal Images for Vessel Extraction (DRIVE) database and Structured Analysis of the Retina (STARE) database, of color retinal images. The experimental results show that the overall performance is with 95% correct optic disc localization from the two databases and 91% disc boundaries are correctly segmented by the SGVF snake algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.