Abstract

Solar photovoltaic systems installed in outdoor environments are susceptible to faults and partial shading, which leads to reduction in the production of maximum power. The conventional protection units are unable to detect the types of faults due to non-linear characteristics and they result in fire hazards and reduced system efficiency. In this paper, a fault detection method based on Multiclass Support Vector Machine (MSVM) is proposed to detect different faults like line-ground (L-G), line-line (L-L), and partial shading. The array voltage, array current and irradiance are used to detect the line-line and partial shading under different irradiation conditions. The novel Opposition-based Border Collie Optimization (OBCO) algorithm is used to improve the accuracy of fault classification by optimizing the hyper-parameters of MSVM. A 1.6 kW, 4 × 4 solar photovoltaic array is developed, and the fault conditions are experimentally tested to validate the proposed algorithm. The experimental results show that the proposed MSVM-OBCO fault detection algorithm has higher accuracy compared to that of the existing classification algorithms such as k-nearest neighbor, Naïve Bayes, Decision Tree and Random Forest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.