Abstract

This paper presents a novel closed-loop control strategy that can be applied to quadrotor trajectory tracking to improve the control accuracy and stability. Inspired by intelligent creatures, the composite control strategy combines the open-loop mode and closed-loop control to overcome some disadvantages of oscillation and overshoot under feedback control mechanisms. The open-loop mode was realized by the quadrotor maneuverability model, which is proposed to build the bridge between the flight control commands and the desired acceleration. Then, a real-time control and acquisition platform with high-precision positioning, low-delay communication, and asynchronous distribution was built to collect the UAV’s real-time flight trajectory data for training the maneuverability model and to control the quadrotors asynchronously. Based on the platform and the trained model, the composite control mode on the closed-loop of the Proportional–Integral–Derivative (PID) control and the open-loop of the Long Short-Term Memory (LSTM) maneuverability model was implemented and verified. The experimental results show that the open-loop control strategy has a better advantage in the unity of time and space over the existing techniques for improving the UAV dynamic obstacle avoidance capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.