Abstract

BackgroundAlthough zebrafish are increasingly utilized in biomedicine for CNS disease modelling and drug discovery, this generates big data necessitating objective, precise and reproducible analyses. The artificial intelligence (AI) applications have empowered automated image recognition and video-tracking to ensure more efficient behavioral testing. New methodCapitalizing on several AI tools that most recently became available, here we present a novel open-access AI-driven platform to analyze tracks of adult zebrafish collected from in vivo neuropharmacological experiments. For this, we trained the AI system to distinguish zebrafish behavioral patterns following systemic treatment with several well-studied psychoactive drugs - nicotine, caffeine and ethanol. ResultsExperiment 1 showed the ability of the AI system to distinguish nicotine and caffeine with 75 % and ethanol with 88 % probability and high (81 %) accuracy following a post-training exposure to these drugs. Experiment 2 further validated our system with additional, previously unexposed compounds (cholinergic arecoline and varenicline, and serotonergic fluoxetine), used as positive and negative controls, respectively. Comparison with existing methodsThe present study introduces a novel open-access AI-driven approach to analyze locomotor activity of adult zebrafish. ConclusionsTaken together, these findings support the value of custom-made AI tools for unlocking full potential of zebrafish CNS drug research by monitoring, processing and interpreting the results of in vivo experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.