Abstract

Serotonin (5-hydroxytriptamine; 5-HT) is a major neurotransmitter that triggers oocyte maturation and sequential spawning in bivalve mollusks. A proteinous and heat-labile substance that proved to be a novel inhibitor of 5-HT-induced egg release from ovarian tissue was found in the cerebral and pedal ganglia (CPG) of the scallop Patinopecten yessoensis. The same inhibitory activity was also observed in the proteinous fraction from the supernatant of hemolymph. Histological observation demonstrated that the novel inhibitor prevented 5-HT from inducing oocyte maturation in the scallop ovary and that no prostaglandin F 2α (PGF 2α) inhibited 5-HT-induced oocyte maturation, although PGF 2α strongly prohibited 5-HT-induced egg release through the gonoduct from ovarian tissue. The novel inhibitor from the scallop CPG also prohibited 5-HT-induced oocyte maturation of other bivalve species as well as scallops. The novel inhibitor, mediated through a receptor mechanism on oocyte membranes, blocked extracellular Ca 2+ uptake into oocytes, which was observed in 5-HT-induced oocyte maturation. It is suggested that the novel inhibitor with a molecular mass of 60 kDa, named oocyte maturation arresting factor, which appears to be a universal substance for bivalve species, may be transported from the CPG to the ovary via hemolymph and may prohibit 5-HT-induced oocyte maturation due to the interference of extracellular Ca 2+ influx into oocytes, eventually resulting in the inhibition of spawning. On the other hand, it seems that PGF 2α inhibits 5-HT-induced transport of mature eggs through the gonoduct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.