Abstract

The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an improved algorithm called recursive reduced least squares support vector regression (IRR-LSSVR) was proposed for establishing a global nonparametric offline model. IRR-LSSVR demonstrates a significant advantage in choosing representing support vectors compared with others. Inspired by the IRR-LSSVR, a new online adaptive parametric kernel method called Weights Varying Least Squares Support Vector Regression (WV-LSSVR) is proposed in this paper using the same type of kernels and the same centers as those used in the IRR-LSSVR. Furthermore, inspired by the multikernel semiparametric support vector regression, the effect of the kernel extension is investigated in a recursive regression framework, and a recursive kernel method called Gaussian Process Kernel Least Squares Support Vector Regression (GPK-LSSVR) is proposed using a compound kernel type which is recommended for Gaussian process regression. Numerical experiments on benchmark data sets confirm the validity and effectiveness of the presented algorithms. The WV-LSSVR algorithm shows higher approximation accuracy than the recursive parametric kernel method using the centers calculated by the k-means clustering approach. The extended recursive kernel method (i.e. GPK-LSSVR) has not shown any advantage in terms of global approximation accuracy when validating the test data set without real-time updates, but it can increase modeling accuracy if real-time identification is involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.