Abstract

This article proposes a real-time electrochemical impedance spectroscopy (EIS) technique that can provide high accurate estimation of the impedance of each lithium-ion (Li-ion) cell of a battery (BT) stack, even for less than mΩ. Thus, the suggested EIS technique can be used in high demanding applications, such as nearly zero-energy buildings, microgrids, and electric vehicles. This is attained because a smooth cell excitation current is utilized that is provided by the proper control of the gate-source of each cell's parallel-connected MOSFET and thus, effective harmonic analysis can be accomplished. Since the circuit topology of the EIS is implemented without requiring expensive electronic equipment, it is affordable to be applied in the BT system of any application. The proposed EIS system can cooperate with a BT cell equalization (BCE) system that utilizes the same MOSFET control scheme to provide the excitation current. Thus, a combined EIS-BCE system is developed that can be used to improve the performance of a Li-ion BT management system. The accuracy of the EIS technique and its high performance by operating within a combined EIS-BCE system are experimentally validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.