Abstract

Numerical computer models could be of high value in testing ideas for improving passive mode locking. Most of the known models for solid-state lasers lack realistic quantitative results, however. A new model is presented, using a rate-equation approach which has been refined to include interference effects by using field amplitudes and phases instead of energies. Also, the saturable absorber is treated by rate equations. With this model, a rather complete description of the pulse evolution is possible. The influence of various parameters on the mode-locking quality is calculated. The model is also capable of reliably describing processes based mainly on interference effects, like the action of external subresonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.